Skip to main content
Log in

Prediction of critical micelle concentration of some anionic surfactants using multiple regression techniques: A quantitative structure-activity relationship study

  • Published:
Journal of Surfactants and Detergents

Abstract

Computer-assisted methods were employed to develop a statistical relationship between molecular-based structural parameters and log critical micelle concentration (CMC) of some anionic surfactants. The CMC of 31 alkyl sulfates and alkanesulfonates were used for model generation. Among different models, two equations were selected as the best, and their specifications are given. The statistics of these models together with cross-validation results indicate the capability of both models to predict the CMC of anionic surfactants. Three descriptors of Wiener number, reciprocal of the dipole moment, and reciprocal of the Randic index appear in the models. Results indicate that topological characteristics, such as compactness and branching of anionic surfactants, play major roles in micelle formation. Polarity of the molecules is also important, but its effect is less than that of topology of the surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crudden, J.J., B.J. Lambert, and R.W. Kohl, Applications of N-Acyl Sarcosine Surfactants, in Industrial Applications of Surfactants III, edited by D.R. Karsa, Royal Society of Chemistry, Cambridge, 1992, p. 95.

    Google Scholar 

  2. Kabara, J.J., W.J. McKillip, and E.A. Sedor, Aminimides: I. Antimicrobial Effect of Some Long Chain Fatty Acid Derivatives, J. Am. Oil Chem. Soc. 52:316 (1975).

    CAS  Google Scholar 

  3. Infante, M.R., J. Molinero, P. Bosch, M.R. Judia, and P. Erra, Lipopeptidic Surfactants: I. Neutral N-Lauroyl-l-arginine Dipeptides from Pure Amino Acids, 66:1835 (1989).

    CAS  Google Scholar 

  4. Xia, J., Y. Xia, and I.A. Nananna, Structure-Function Relationship of Acyl Amino Acid Surfactants: Surface Activity and Antimicrobial Properties, J. Agric. Food Chem. 43:867 (1995).

    Article  CAS  Google Scholar 

  5. Brooks, S.H., A. Berthod, B.A. Krisch, and J.G. Dorsey, Flow-Injection System for Determination of Critical Micelle Concentrations of Ionic and Nonionic Surfactants, Anal. Chim. Acta 209:111 (1988).

    Article  CAS  Google Scholar 

  6. Rosen, M.J., Surfactants and Interfacial Phenomena, John Wiley & Sons, New York, 1989, p. 108.

    Google Scholar 

  7. Yaroshenko, N.A., and Zh.M. Aryamova, Accounting for Surface Tension in the Determination of Critical Micelle Concentration for Aqueous Solutions of Ionic Surfactants, Ukr. Khim. Zh. 51:466 (1985).

    CAS  Google Scholar 

  8. Corno, C., E. Platone, and S. Ghelli, Carbon-13 NMR Analysis of Polyoxyethylenated Surfactants Determination of Critical Micellar Concentration, Colloid Polym. Sci. 262:667 (1984).

    Article  CAS  Google Scholar 

  9. Furton, K.G., and A. Norelus, Determining the Critical Micelle Concentration of Aqueous Surfactant Solutions: Using a Novel Calorimetric Method, J. Chem. Educ. 70:254 (1993).

    CAS  Google Scholar 

  10. Mandal, A.B., B. Nair, and D. Ramaswamy, Determination of Critical Micelle Concentration of Surfactants Using Cyclic Voltametry, Bull. Electrochem. 4:565 (1988).

    CAS  Google Scholar 

  11. Vollhardt, D., The A.C. Polarographic Method for the Simple Direct Determination of the Critical Micelle Concentration, Tenside Deterg. 12:225 (1975).

    Google Scholar 

  12. De Vendittis, E., G. Palumbo, G. Parlato, and V. Bocchini, A Fluorimetric Method for the Estimation of the Critical Micelle Concentration of Surfactants, Anal. Biochem. 115:278 (1981).

    Article  Google Scholar 

  13. Nakamura, H., A. Sano, and K. Matsuura, Determination of Critical Micelle Concentration of Anionic Surfactants by Capillary Electrophoresis Using 2-Naphthalenemethanol as a Marker for Micelle Formation, Anal. Sci. 14:379 (1998).

    Article  CAS  Google Scholar 

  14. Kawakatsu, T., K. Kawasaki, and F. Hirofumi, Theories and Computer Simulations of Self-Assembling Surfactant Solutions, J. Phys. Condens. Matter 6:6385 (1994).

    Article  CAS  Google Scholar 

  15. Karaborni, S., K. Esselink, P.A.J. Hilbers, and B. Smit, Simulating Surfactant Self-Assembly, 6 (Suppl. 23A):A351 (1994).

    Article  CAS  Google Scholar 

  16. Zoller, N.J., A. Shiloach, and D. Blankschten, Predicting Surfactant Solution Behavior, CHEMTECH 26:24 (1996).

    Google Scholar 

  17. Van Helden, A.K., Computer Simulation Studies of Surfactant Systems, Prog. Colloid. Polym. Sci. 100:48 (1996).

    Article  Google Scholar 

  18. Porter, M.R. Handbook of Surfactants, 2nd edn., Chapman & Hall, New York, 1994, p. 116.

    Google Scholar 

  19. SPSS/PC, The Statistical Package for IBM PC, Quiad Software, Ontario (1986).

  20. MOPAC, Version 6, U.S. Air Force Academy, Colorado Springs.

  21. HyperChem, Release 3 for Windows, Molecular Modeling System, HyperCube, Inc. and Autodesk Inc. (1993).

  22. Van Os, N.M., J.R. Haak, and L.A.M. Rupert, Physico-chemical Properties of Selected Anionic. Cationic and Nonionic Surfactants, Elsevier Science Publishers, New York, 1993, p. 9.

    Google Scholar 

  23. Wiener, H., Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69:17 (1947).

    Article  CAS  Google Scholar 

  24. Randic, M., Rearrangement of the Connectivity Matrix of a Graph Reply to Comments, J. Chem. Phys. 62:309 (1975).

    Article  CAS  Google Scholar 

  25. Balaban, A.T., Highly Discriminating Distance-Based Topological Index, Chem. Phys. Lett. 89:399 (1982).

    Article  CAS  Google Scholar 

  26. Stouch, T.R., and P.C. Jurs, A Simple Method for the Representation, Quantification and Comparision of the Volumes and Shapes of Chemical Compounds, J. Chem. Inf. Comput. Sci. 26:4 (1986).

    Article  CAS  Google Scholar 

  27. George, D., and P. Mallery, SPSS/PC+Step By Step, A Simple Guide and Reference, Wadsworth Publishing Company, 1995, p. 168.

  28. Cramer, R.D., D.E. Patterson, and J.D. Bunce, Comparative Molecular Field Analysis (Comfa). 1. Effect of Shape on Binding of Steroids to Carrier Proteins, J. Am. Chem. Soc. 110:5959 (1988).

    Article  CAS  Google Scholar 

  29. Mihalic, Z., and N. Trinajstic, A Graph-Theoretical Approach to Structure-Property Relationships, J. Chem. Educ. 69:701 (1992).

    Article  CAS  Google Scholar 

  30. Stache, H.W., Anionic Surfactants, Organic Chemistry, Vol. 56, Marcel Dekker, New York, 1996, p. 243.

    Google Scholar 

  31. Kovtunenko, L.I., N.I. Smirnov, and N.P. Titova, Surface and Rheological Properties of Aqueous Solutions of Sodium Monoalkylsulfonates, Zh. Prikl. Khim. 48:323 (1975).

    CAS  Google Scholar 

  32. Wright, K., and H.V. Tartar, Solubilities, Micelle Formation and Hydrates of the Sodium Salts of the Higher Alkylsulfonates, J. Am. Chem. Soc. 61:539 (1939).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jalali-Heravi.

About this article

Cite this article

Jalali-Heravi, M., Konouz, E. Prediction of critical micelle concentration of some anionic surfactants using multiple regression techniques: A quantitative structure-activity relationship study. J Surfact Deterg 3, 47–52 (2000). https://doi.org/10.1007/s11743-000-0112-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-000-0112-5

Key Words

Navigation